
Web Architecture 253

Web Architecture 253

Web Architecture 253
Privacy & Security

columbia university
school of engineering and applied science

bs in computer science
1999

who's this guy?

13+ years
writing software and managing engineers

who's this guy?

4 months zynga

who's this guy?

We all make mistakes

ivan leichtling
engineering manager for

yelp's security team

who's this guy?

what are we up to

● why security matters
● what's worth protecting
● principles of security
● common exploits
● security resources

why security matters

impact to business continuity

why security matters

impact to business continuity

why security matters

focus on security
to ensure

business continuity

why security matters

impact to finances

why security matters

impact to finances

why security matters

focus on security
to protect

your finances

why security matters

impact to your users

why security matters

impact to your users

why security matters

focus on security
to protect and maintain

your users

what are we up to

● why security matters
● what's worth protecting
● principles of security
● common exploits
● security resources

what's worth protecting

the first step in being a hacker is deciding
what's worth stealing

the first step in security is deciding
what's worth protecting

what's worth protecting

when you try to figure out what to protect
ask yourself the question

if i stole this, what could i do with it?

what's worth protecting

if i stole this, what could i do with it?

what's worth protecting

if i stole this, what could i do with it?

what's worth protecting

if i stole this, what could i do with it?

what's worth protecting

if i stole this, what could i do with it?

what's worth protecting

if i stole this, what could i do with it?

what are we up to

● why security matters
● what's worth protecting
● principles of security
● common exploits
● security resources

principles of security

principles of security

defense-in-depth

principles of security

defense-in-depth

principles of security

defense-in-depth

the principle of defense-in-depth is that layered
security mechanisms increase security of the
systems as a whole. if an attack causes one
security mechanism to fail, other mechanisms
may still provide the necessary security to
protect the system

principles of security

defense-in-depth

defense in depth is a
straightforward principle: imagine
your application in the last
component standing and every
defensive mechanism protecting
you has been destroyed. now
you must protect yourself. for
example, if you expect a firewall
to protect you, build the system
as though the firewall has been
compromised.

principles of security

least privilege

principles of security

least privilege

principles of security

least privilege

a user or website must only
be able to access information
and resources necessary for
its legitimate purpose

if bob in sales can't access credit
card numbers, then the cards are
safe if bob's password is stolen

principles of security
attack surface reduction

principles of security
attack surface reduction

every feature of a website is
a potential surface a hacker
can try to attack.

the basic strategies of attack surface reduction are to reduce
the amount of code running, reduce entry points available to
untrusted users, reduce privilege levels as much as possible,
and eliminate services requested by relatively few users.

principles of security
cryptography is hard

principles of security
cryptography is hard

principles of security
cryptography is hard

● proper use of crypto is hard to do right
● experts frequently apply crypto

incorrectly
● never write your own crypto
● there's a lot of snake oil out there

what are we up to

● why security matters
● what's worth protecting
● principles of security
● common exploits
● security resources

common exploits

SQL injection

Structure Query Language is the command set generally
used to get data out of a database.

SELECT * FROM product_table WHERE type='fruit'

database
SQL

result

common exploits

SQL injection

"SELECT * FROM" + request['table'] + "WHERE type=" +
request['type']

result

database has 2 tables

common exploits

SQL injection

"SELECT * FROM" + request['table'] + "WHERE type=" +
request['type']

result

database has 2 tables

common exploits

SQL injection

SQL injection is an exploit where a SQL query is built using
input from the user. the attacker sends specific input that
causes the website to show, edit, or destroy unintended
information in the database.

common exploits

protecting against SQL injection

● never write raw SQL in your web code
instead use a library for accessing the
database that explicitly protects against SQL
injection

● libraries make use of things like prepared
statements and query escaping

● use active proxy tools like rat proxy or burp
proxy to test for SQL injection on your site

● apply defense-in-depth

common exploits

XSS - cross site scripting

<title>search for stuff</title>
<body>
 <h1>searching for {{ term }}</h1>

 {% for result in search_results %}
 {{ result.name }}
 {% endfor %}

</body>

common exploits

XSS - cross site scripting

<title>search for stuff</title>
<body>
 <h1>searching for {{ term }}</h1>

 {% for result in search_results %}
 {{ result.name }}
 {% endfor %}

</body>

common exploits

XSS - cross site scripting

<title>search for stuff</title>
<body>
 <h1>searching for <script>alert('hacked')</script> </h1>

</body>

common exploits

XSS - cross site scripting

XSS is an exploit where a page displays user
input. the attacker sends specific input that
causes the website to unintentionally run
malicious javascript.
● reflected XSS - user input is echoed back

right away
● stored XSS - user input is stored in a

database and then shown on a different
page

common exploits

protecting against XSS

html allows for special characters like < or > to
be represented with an escape sequence. the
escape sequence can't trick a browser into
running a <script> tag where one wasn't
intended.
● always validate input as soon as it is

received
● always escape output before sending to the

user

character escape sequence

< <

> >

" "

& &

common exploits

protecting against XSS

● html template systems like jinja2 or django
provide automatic escaping on output

● use active proxy tools like rat proxy or burp
proxy to test for XSS on your site

● apply the principle of defense-in-depth:
check input on the client with javascript,
check input again on the server, then check
output

common exploits

protecting against XSS

<title>search for stuff</title>
<body>
 <h1>searching for {{ html_escape(term) }}</h1>

 {% for result in search_results %}
 {{ result.name }}
 {% endfor %}

</body>

common exploits

protecting against XSS

<title>search for stuff</title>
<body>
 <h1>searching for <script>alert('hacked')</script></h1>

</body>

common exploits

man-in-the-middle

when pages show sensitive data but don't use
https, then an attacker can spy on the sensitive
data. this spying is called man-in-the-middle.

common exploits

protecting against man-in-the-middle

● design your site to only transmit sensitive
data over https. adding https late makes
design hard

● never mix https and http images, scripts, or
other resources on the same page

● make sure your SSL certificate is valid
● apply the principle of attack surface

reduction. the less sensitive data you show,
the better

common exploits

CSRF - cross site referral forgery

<title>learn more about ivan.com</title>
<body>
 <h1>ivan is really interesting</h1>

 click here to learn more!!

</body>

whoa! unexpected!

common exploits

CSRF - cross site referral forgery

<title>see my awesome photo</title>
<body>
 <h1>photos are neat</h1>

 see a pretty photo!!
</body>

that's no image!

common exploits

CSRF - cross site referral forgery

CSRF forces a user to visit a page for which
he/she is already authenticated. the user ends
up execute actions of the attacker's choosing. a
successful CSRF exploit can compromise end
user data and operation in case of normal user.
attacks targeting an administrator account, can
compromise an entire site.

common exploits

protecting against CSRF

● require that sensitive actions use an http POST - a form
- rather than a GET - a simple link

● use a framework like django or jinja which has built in
CSRF protection for form POST
○ forms include a hidden field with a secret value that

has to be submitted with the form
○ CSRF tokens are tied to a specific user and

pageview
○ attackers can not guess what magic token should go

with a specific

common exploits

protecting against CSRF

<form method="post" action="/delete_all">
 <input type="hidden"
 name="csrf_token"
 value="jBGh345Tls98" />
 <input type="submit"
 value="delete your mail" />
</form>

common exploits

social engineering

social engineering is manipulating people into
divulging confidential information like
passwords, private website addresses,
information on how data is stored, etc.

there are few technical solutions to social
engineering but user education, policies, and
good use of security principles help mitigate.

what are we up to

● why security matters
● what's worth protecting
● principles of security
● common exploits
● security resources

security resources

OWASP
Open Web Application Security Project

https://www.owasp.org

tons more information on all these topics

https://www.owasp.org
https://www.owasp.org

security resources

CWE
Common Weakness Enumeration

http://cwe.mitre.org

tons more information on all these topics

http://cwe.mitre.org
http://cwe.mitre.org

security resources

reddit
/r/netsec

http://www.reddit.com/r/netsec

topical discussion among professionals
and wannabees

http://www.reddit.com/r/netsec
http://www.reddit.com/r/netsec

